1,600 research outputs found

    The Nucleon-Nucleon Potential in the Chromo-Dielectric Soliton Model: Statics

    Full text link
    We study the N-N interaction in the framework of the chromo-dielectric soliton model. Here, the long-range parts of the nonabelian gluon self-interactions are assumed to give rise to a color-dielectric function which is parameterized in terms of an effective scalar background field. The six-quark system is confined in a deformed mean field through an effective non-linear interaction between the quarks and the scalar field. The CDM is covariant, respects chiral invariance, leads to absolute color confinement and is free of the spurious long range Van der Waals forces which trouble non-relativistic investigations employing a confining potential. Six-quark molecular-type configurations are generated as a function of deformation and their energies are evaluated in a coupled channel analysis. By using molecular states instead of cluster model wave functions, all important six-quark configurations are properly taken into account. The corresponding Hamiltonian includes the effective interaction between the quarks and the scalar background field and quark-quark interactions generated through one gluon exchange treated in Coulomb gauge. When evaluating the gluonic propagators, the inhomogeneity and deformation of the dielectric medium are taken into account. Results for the adiabatic nucleon-nucleon potential are presented, and the various contributions are discussed. Finally, an outlook is given on how, in the next stage of our investigation, the dynamical effects will be incorporated by employing the generator coordinate method.Comment: 43 pages, REVTeX file followed by 11 uuencoded PostScript figures, DOE/ER/40427-02-N9

    Proceedings of the MECA Workshop on The Evoluation of the Martian Atmosphere

    Get PDF
    Topics addressed include: Mars' volatile budget; climatic implications of martian channels; bulk composition of Mars; accreted water inventory; evolution of CO2; dust storms; nonlinear frost albedo feedback on Mars; martian atmospheric evolution; effects of asteroidal and cometary impacts; and water exchange between the regolith and the atmosphere/cap system over obliquity timescales

    New approach to 4^4He charge distribution

    Get PDF
    We present a study of the 4^4He charge distribution based on realistic nucleonic wave functions and incorporation of the nucleon's quark substructure. The central depression of the proton point density seen in modern four-body calculations is too small by itself to lead to a correct description of the charge distribution. We utilize six-quark structures calculated in the Chromodielectric Model for N-N interactions, and we find a swelling of the proton charge distribution as the internucleon distance decreases. These charge distributions are combined with the 4^4He wave function using the Independent Pair Approximation and two-body distributions generated from Green's Function Monte Carlo calculations. We obtain a reasonably good fit to the experimental charge distribution without including meson exchange currents.Comment: 9 pages, LaTeX, 4 figures (Figures 1 and 2 doesn't exist as postscript files : they are only available on request

    Ergonomics Case Study: EA-6B Aircraft Maintainer

    Get PDF
    Keeping our military aircraft mechanics healthy is essential for the defense of the country. To better understand the conditions which on-duty aircraft maintainers face, A series of ergonometric evaluations were performed on a retired United States Marine Corps mechanic as he simulated tasks performed while maintaining EA-6B Prowler aircraft. Four tasks were evaluated with either the Rapid Entire Body Assessment (REBA) tool, or the Washington State Risk Assessment Checklist (WAC). The tasks were grouped as being either strenuous or repetitive. The strenuous tasks involved high physical exertion. Repetitive tasks were less demanding but needed to be performed many times during a mechanic’s shift. Two strenuous tasks were examined, those being the replacement of engine Constant Speed Drive (CSD) units and engine access doors. The two repetitive tasks analyzed were the inspections of both cockpits and engine compressor blades. All tasks analyzed with the REBA scored within its two highest risk categories, and the weight of the CSD exceeded that recommended by the WAC by over 30lbs. Mechanics who perform these tasks should be aided by using mechanized jacks to lift heavy objects, while aspects of the repetitive tasks should be automated reduce their cumulative strain

    Evaluating wildlife-cattle contact rates to improve the understanding of dynamics of bovine tuberculosis transmission in Michigan, USA

    Get PDF
    Direct and indirect contacts among individuals drive transmission of infectious disease. When multiple interacting species are susceptible to the same pathogen, risk assessment must include all potential host species. Bovine tuberculosis (bTB) is an example of a disease that can be transmitted among several wildlife species and to cattle, although the potential role of several wildlife species in spillback to cattle remains unclear. To better understand the complex network of contacts and factors driving disease transmission, we fitted proximity logger collars to beef and dairy cattle (n = 37), white-tailed deer (Odocoileus virginianus; n=29), raccoon (Procyon lotor; n=53), and Virginia opossum (Didelphis virginiana; n=79) for 16 months in Michigan\u27s Lower Peninsula, USA. We determined inter- and intra-species direct and indirect contact rates. Data on indirect contact was calculated when collared animals visited stationary proximity loggers placed at cattle feed and water resources. Most contact between wildlife species and cattle was indirect, with the highest contact rates occurring between raccoons and cattle during summer and fall. Nearly all visits (\u3e99%) to cattle feed and water sources were by cattle, whereas visitation to stored cattle feed was dominated by deer and raccoon (46% and 38%, respectively). Our results suggest that indirect contact resulting from wildlife species visiting cattle-related resources could pose a risk of disease transmission to cattle and deserves continued attention with active mitigation

    SAM-2 ground-truth plan: Correlative measurements for the Stratospheric Aerosol Measurement-2 (SAM 2) sensor on the Nimbus G satellite

    Get PDF
    The SAM-2 will fly aboard the Nimbus-G satellite for launch in the fall of 1978 and measure stratospheric vertical profiles of aerosol extinction in high latitude bands. The plan gives details of the location and times for the simultaneous satellite/correlative measurements for the nominal launch time, the rationale and choice of the correlative sensors, their characteristics and expected accuracies, and the conversion of their data to extinction profiles. The SAM-2 expected instrument performance and data inversion results are presented. Various atmospheric models representative of polar stratospheric aerosols are used in the SAM-2 and correlative sensor analyses

    Evaluating wildlife-cattle contact rates to improve the understanding of dynamics of bovine tuberculosis transmission in Michigan, USA

    Get PDF
    Direct and indirect contacts among individuals drive transmission of infectious disease. When multiple interacting species are susceptible to the same pathogen, risk assessment must include all potential host species. Bovine tuberculosis (bTB) is an example of a disease that can be transmitted among several wildlife species and to cattle, although the potential role of several wildlife species in spillback to cattle remains unclear. To better understand the complex network of contacts and factors driving disease transmission, we fitted proximity logger collars to beef and dairy cattle (n = 37), white-tailed deer (Odocoileus virginianus; n=29), raccoon (Procyon lotor; n=53), and Virginia opossum (Didelphis virginiana; n=79) for 16 months in Michigan\u27s Lower Peninsula, USA. We determined inter- and intra-species direct and indirect contact rates. Data on indirect contact was calculated when collared animals visited stationary proximity loggers placed at cattle feed and water resources. Most contact between wildlife species and cattle was indirect, with the highest contact rates occurring between raccoons and cattle during summer and fall. Nearly all visits (\u3e99%) to cattle feed and water sources were by cattle, whereas visitation to stored cattle feed was dominated by deer and raccoon (46% and 38%, respectively). Our results suggest that indirect contact resulting from wildlife species visiting cattle-related resources could pose a risk of disease transmission to cattle and deserves continued attention with active mitigation

    Impact and collisional processes in the solar system

    Get PDF
    As impact cratered terrains have been successively recognized on certain planets and planetary satellites, it has become clear that impact processes are important to the understanding of the accretion and evolution of all solid planets. The noble gases in the normalized atmospheric inventories of the planets and the normalized gas content of meteorites are grossly similar, but demonstrate differences from each other which are not understood. In order to study shock devolatilization of the candidate carrier phases which are principally thought to be carbonaceous or hydrocarbons in planetesimals, experiments were conducted on noble gase implantation in various carbons: carbon black, activated charcoal, graphite, and carbon glass. These were candidate starting materials for impact devolatilization experiments. Initial experiments were conducted on vitreous amorphous carbon samples which were synthesized under vapor saturated conditions using argon as the pressurizing medium. An amino acid and surface analysis by laser ionization analyses were performed on three samples of shocked Murchison meteorite. A first study was completed in which a series of shock loading experiments on a porous limestone and on a non-porous gabbro in one and three dimensions were performed. Also a series of recovery experiments were conducted in which shocked molten basalt a 1700 C is encapsulated in molybdenum containers and shock recovered from up to 6 GPa pressures

    The Nucleon-Nucleon Interaction in a Chiral Constituent Quark Model

    Get PDF
    We study the short-range nucleon-nucleon interaction in a chiral constituent quark model by diagonalizing a Hamiltonian comprising a linear confinement and a Goldstone boson exchange interaction between quarks. The six-quark harmonic oscillator basis contains up to two excitation quanta. We show that the highly dominant configuration is ∣s4p2[42]O[51]FS>\mid s^4p^2[42]_O [51]_{FS}> due to its specific flavour-spin symmetry. Using the Born-Oppenheimer approximation we find a strong effective repulsion at zero separation between nucleons in both 3S1^3S_1 and 1S0^1S_0 channels. The symmetry structure of the highly dominant configuration implies the existence of a node in the S-wave relative motion wave function at short distances. The amplitude of the oscillation of the wave function at short range will be however strongly suppressed. We discuss the mechanism leading to the effective short-range repulsion within the chiral constituent quark model as compared to that related with the one-gluon exchange interaction.Comment: 31 pages, LaTe
    • …
    corecore